The D-module Structure of F-Split Rings
نویسندگان
چکیده
منابع مشابه
The D-module Structure of F-split Rings
The purpose of this note is to point out an interesting connection between the structure of a commutative, Noetherian ring of prime characteristic as a (left) module over its ring of diierential operators and various well studied properties such as F-purity, F-regularity, and strong F-regularity. Theorem 2.2 establishes the rst connections between the D-module structure of rings of characterist...
متن کاملThe D–module Structure of R[f ]–modules
Let R be a regular ring, essentially of finite type over a perfect field k. An R–module M is called a unit R[F ]–module if it comes equipped with an isomorphism F M −→ M, where F denotes the Frobenius map on SpecR, and F e∗ is the associated pullback functor. It is well known that M then carries a natural DR–module structure. In this paper we investigate the relation between the unit R[F ]–stru...
متن کاملThe structure of module contractible Banach algebras
In this paper we study the module contractibility ofBanach algebras and characterize them in terms the conceptssplitting and admissibility of short exact sequences. Also weinvestigate module contractibility of Banach algebras with theconcept of the module diagonal.
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولA KIND OF F-INVERSE SPLIT MODULES
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 1995
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.1995.v2.n4.a1